
Logically Constrained Decoding

Franklin Ma and Alan J. Hu
Department of Computer Science
University of British Columbia

franklin.ma@ubc.ca, ajh@cs.ubc.ca

Abstract

Constrained decoding is a state-of-the-art tech-
nique for restricting the output of a Large Lan-
guage Model (LLM) to obey syntactic rules,
e.g., a regular expression or context-free gram-
mar. In this paper, we propose a method for
extending constrained decoding beyond syn-
tactic constraints, to enforcing formal, logical
constraints that reflect some world model be-
ing reasoned about. We demonstrate proof-of-
concept implementations for the game of chess,
and for propositional resolution proofs: we con-
strain the LLM’s decoding such that the LLM is
free to output whatever tokens it wants, as long
as it does not make illegal moves (chess) or un-
sound proof steps (resolution). We believe this
technique holds promise for improving LLMs’
generation of precise, formal reasoning, as is
particularly necessary for mathematics.

1 Introduction

Proof is the quintessential distinguishing feature
of mathematical discourse. Like other forms of
argumentation, the statements in a proof must be
syntactically correct and semantically meaningful,
and the overall text should lead to the desired con-
clusion. What makes proofs distinctive is that each
statement must be sound, i.e., it must obey formal
logical rules with respect to the preceding state-
ments. This is akin to the moves in a game or
puzzle: each step must be a legal move. Many
applications require such precise, correct, logical
reasoning, underscoring the importance of research
on NLP for mathematics.

Large Language Models (LLMs) have made ex-
traordinary progress on mathematical reasoning,
e.g., both OpenAI and Google DeepMind recently
announced gold-medal-level performance on Inter-
national Math Olympiad problems (Wei, 2025; Lu-
ong and Lockhart, 2025). However, even leading-
edge frontier models frequently make mistakes.
In this paper, we do not concern ourselves with

8 0Z0Z0Z0Z
7 S0a0skop
6 0ZpZ0o0Z
5 ZpZ0Z0Z0
4 0O0Z0Z0Z
3 ZpONZ0O0
2 0Z0Z0O0O
1 Z0Z0ZKZ0

a b c d e f g h

Figure 1: ChatGPT-5 (White) is playing against Stock-
fish 17.1 (Black). On move 30, White attempts Rxe7+
(shown in blue), i.e., taking Black’s rook at e7 and at-
tacking Black’s king with White’s rook at a7. This is
illegal as Black’s bishop on c7 is in the way.

wild hallucinations, but rather focus on formally
invalid reasoning: statements that, given the pre-
cise logic of the world model underlying the rea-
soning, are illegal or incorrect. For example, we
pitted ChatGPT-5 against the well-known chess en-
gine Stockfish (Romstad et al., 2008–present) in
a casual game.1 ChatGPT played a solid opening,
but stumbled a bit in the mid-game, reaching the
position shown in Fig. 1 with ChatGPT (White)
to play its 30th move. At this point, ChatGPT
attempted a flagrantly illegal move, presumably

1The details of the game are unimportant, but for the cu-
rious: We used Stockfish version 17.1, with default settings
except a depth-limit of 15. ChatGPT-5 played White, and
Stockfish played Black. The moves played were: 1. e4 e5 2.
Nf3 Nc6 3. Bb5 a6 4. Ba4 Nf6 5. O-O Nxe4 6. d4 b5 7. Bb3
d5 8. dxe5 Be6 9. c3 Be7 10. Re1 O-O 11. Nbd2 Bc5 12.
Nxe4 dxe4 13. Qxd8 Rfxd8 14. Rxe4 Bxb3 15. axb3 Rd1+
16. Re1 Rxe1+ 17. Nxe1 Nxe5 18. Bf4 Bd6 19. Bxe5 Bxe5
20. Nd3 Bd6 21. Re1 a5 22. Ra1 f6 23. Kf1 Kf7 24. Ke2 c6
25. g3 Bc7 26. b4 Re8+ 27. Kf1 a4 28. b3 axb3 29. Ra7 Re7,
whereupon ChatGPT attempted an illegal move.

indicating that it had lost track of the underlying
world model (the board state). Or, for a more math-
ematical example, we asked ChatGPT-5 to produce
a resolution-based refutation proof for a pigeon-
hole problem with 3 pigeonholes. (See §2.2 and
§4.2 for more explanation.) ChatGPT produced 74
logically sound (but sometimes useless or repeti-
tive) resolution steps, before declaring on the 75th
step, confidently but completely unfoundedly, that
it had reached a contradiction and completed the
“proof”. We witnessed similar failures with Claude
Sonnet 4.

Considerable research has boosted performance
of language models on complex reasoning tasks,
with techniques like chain-of-thought (Wei et al.,
2023) and reinforcement learning with verified re-
wards (Wang et al., 2025). However, such tech-
niques do not guarantee that the LLM will not
produce logically illegal outputs. Furthermore, it
seems inefficient to try to train language models
to do fully precise, logical reasoning, when ex-
isting symbolic techniques can handle that well.
For example, Pan et al. 2025 show that it is theo-
retically possible for a custom-programmed trans-
former to decide propositional satisfiability (albeit
inefficiently), but that an empirically trained trans-
former for 3SAT generalizes and scales poorly; in
contrast, existing SAT solvers routinely solve prac-
tical problem instances with millions of variables.
We believe a neuro-symbolic approach — i.e., aug-
menting the language model with logical, symbolic
reasoning — holds great promise to marry the best
attributes of both approaches.2

Specifically, we build our work on constrained
decoding, a state-of-the-art technique for restricting
the output of an LLM to obey syntactic rules, e.g.,
a regular expression (Beurer-Kellner et al., 2023;
Willard and Louf, 2023) or context-free grammar
(Willard and Louf, 2023; Ugare et al., 2024).3 We
propose to lift the concept of constrained decod-
ing beyond syntactic constraints, to enforcing for-
mal, logical constraints that reflect some underly-
ing world model. We demonstrate proof-of-concept

2There is even intriguing neuroscience evidence in support
of such an approach. In a brain imaging study on highly edu-
cated subjects, professional mathematicians used completely
different neural pathways to solve math problems, whereas the
non-mathematically trained subjects relied solely on their lan-
guage pathways, with lower accuracy (Amalric and Dehaene,
2016).

3In recent work, Mündler et al. 2025 have also extended
constrained decoding beyond syntactic constraints, to generate
type-safe code. Our work is philosophically very much aligned
with theirs.

implementations for the game of chess, and for
propositional resolution proofs. We show that our
method is easily implemented with several different
open-source language models, ensuring generation
of guaranteed-correct outputs, while not otherwise
perturbing the language models.

2 Background

2.1 Chess

For 60 years, the game of chess has been pro-
claimed “the Drosophila of AI”.4 “Drosophila”
refers to Drosophila melanogaster, a species of
fruit fly that has been a favorite subject of biological
research as a model organism: they are cheap and
fast to raise, relatively simple for experiments and
analysis, yet they can illuminate the same concepts
important in larger and more relevant organisms.
AI research has used chess for exactly analogous
reasons, and we follow this tradition by using chess
for our initial implementation and experiments.

Chess is a two-player, deterministic (i.e., there is
no luck involved), perfect-information (i.e., there
is no hidden information, like face-down playing
cards), turn-based (i.e., the players take turns mak-
ing moves) game. Each player starts with a stan-
dard set of playing pieces, arranged on the play-
ing board in a standard configuration. One player
(dubbed “White”) plays the light-colored pieces,
and moves first; the other player (“Black”) plays
the dark-colored pieces. There are a variety of
types of pieces, with specific formal rules govern-
ing how each piece is allowed to move on the board,
and to “capture” (remove from the board) pieces
from the opposing player. For example, in the
board position shown in Fig. 1, White’s piece on
square a7 is called a “rook” and is allowed in a
single turn to move any distance vertically or hori-
zontally, but only through empty squares. It could
also move to square c7, resulting in the removal
from the board of Black’s “bishop” currently on
that square. But it is not allowed to move past
c7, because Black’s bishop occupies that square
and blocks further movement. Each player has one
distinguished piece, called the “king”, and to win
the game, a player tries to reach a game state in
which one is attacking the opponent’s king such
that they cannot prevent their king being captured
(called “checkmate”). It is also possible for a game

4According to Ensmenger 2012, this metaphor originated
with Russian mathematician Alexander Kronrod in 1965 and
first appeared in print in (Simon and Chase, 1973).

to end as a draw, in which neither player wins. For
example, if a player has no legal moves, but his
king is not under attack, then the game ends in a
draw.

Chess has a rich literature, spanning centuries.
We have presented just enough concepts so that
a reader unfamiliar with chess can follow the key
points of this paper. We reiterate that our goal is
not to produce a superior chess engine, but to use
chess as an example of an underlying world model
with formal rules, which we can use to constrain
an LLM playing chess, such that it never makes an
illegal move.

2.2 Propositional Resolution Proofs
In propositional logic, all variables are Boolean
(true/false), and there are no function or predi-
cate symbols. Many logical operators are stan-
dard, e.g., AND, OR, NOT, etc., but it is standard
to assume that formulas are in conjunctive nor-
mal form (CNF): a literal is either a variable x,
or its negation x; a clause is the disjunction of
a set of literals, e.g., (x1 + x2 + x3); and a for-
mula is the conjunction of a set of clauses, e.g.,
(x1 + x2 + x3)(x3 + x4 + x5). (We use + to de-
note OR, and juxtaposition to denote AND.) Propo-
sitional logic is the foundational layer of logical
reasoning, making it an ideal testbed for the rea-
soning capabilities of any AI system. As such, we
propose that propositional logic be the drosophila
of reasoning.5

Formally, a mathematical proof is simply a se-
quence of statements, leading from a set of assump-
tions to a desired conclusion, such that (1) each
statement is logically implied by the assumptions
and preceding statements in the proof, and (2) this
implication can be efficiently checked, usually syn-
tactically according to the rules of a given proof sys-
tem. Specifically, in this paper, we focus on proof
by resolution: given two clauses (A1+· · ·+An+x)
and (B1+ · · ·+Bm+x), where the Ai and Bj are
literals, and x is some variable, then the conjunc-
tion of the two clauses implies the clause (called
the “resolvent”) (A1+ · · ·+An+B1+ · · ·+Bm).
In a proof by resolution, each statement in the
proof must be the resolvent of clauses from the
assumptions or previously generated proof state-

5Pan et al. 2025 express a similar sentiment: “Boolean SAT
solving captures the essence of deductive logical reasoning
because: 1) Boolean logic lies as the foundation of all logical
reasoning, and 2) many modern SAT solvers are inherently
formal deductive systems that implement the resolution proof
system.”

ments. Resolution is known to be a sound (i.e., no
false statement can be proven) and complete (i.e.,
any true statement can be proven) proof system.
Without loss of generality, we further restrict our-
selves in this paper to proofs by refutation, mean-
ing that the desired conclusion is to imply false,
which proves that the original assumptions are a
contradiction.

For convenience in interacting with the text-
based LLMs, we adopt the common convention
of denoting variables simply by their number, and
denoting negation using the minus sign. So the ear-
lier example of clauses (x1+x2+x3)(x3+x4+x5),
would be denoted (1 + 2 + −3) (3 + −4 + 5).

2.3 Constrained Decoding

At a high level, a typical LLM works as follows:
1: initialize buf ← initial prompt
2: repeat
3: dist ← Softmax(Nnet(buf))
4: sample next_token from dist
5: append next_token to buf
6: until next_token = EOS

where buf is the context buffer; Nnet is the neural
network in the LLM that produces weights for each
possible next token; dist is a probability distribu-
tion over the possible next tokens, generated via
some version of softmax; and EOS is the end-of-
sequence token.

The goal is to constrain the LLM to generate only
output that obeys some syntax rules. But given the
large investment in training the network Nnet, we
do not want to modify it. And given that evaluating
Nnet(buf) is slow, we wish to avoid any backtrack-
ing or speculative evaluation.

Constrained decoding takes advantage of this ba-
sic LLM architecture to modify only the decoding
step, to mask out illegal token choices: (Changes
are highlighted in green.)

1: initialize buf ← initial prompt
2: initialize parser P.INIT(buf)
3: repeat
4: dist ← Softmax(Nnet(buf))
5: mask ← P.LEGALNEXTTOKENS()
6: disallow in dist any token not in mask
7: sample next_token from dist
8: append next_token to buf
9: update P.UPDATESTATE(next_token)

10: until next_token = EOS

Here, P is some sort of parsing engine for the syn-
tactic constraints being enforced. For example, if

we wish to force the LLM output to obey a regular
expression, then P could maintain a finite-state au-
tomaton that tracks all states from which there is a
path to an accepting state. By restricting the next to-
ken to always be in P.LEGALNEXTTOKENS(), we
guarantee that the generated output cannot violate
the regular expression.

Constrained decoding has the desired properties:
Nnet is not modified, and not evaluated more than
necessary, and the output is guaranteed to obey
the syntactic restrictions. An additional desirable
property is that it is “minimally invasive” (Beurer-
Kellner et al., 2024), meaning all legal behavior
of the LLM is still allowed, with the same rel-
ative probabilities. Clever implementation can
make constrained decoding very efficient. For ex-
ample, “token misalignment” occurs if the LLM
and parser tokenize the text stream differently;
this can be solved efficiently by pre-computing
what is essentially small automaton that performs
a limited look-ahead at what tokens the parse is
prepared to accept. (Beurer-Kellner et al., 2024;
Hamilton and Mimno, 2025) It is also useful to
be able to switch between constrained and uncon-
strained decoding, because restricting the LLM
to only constrained output can limit its reasoning
ability. (Banerjee et al., 2025) This can be accom-
plished easily by having the parser recognize spe-
cific token sequences to start and stop enforcing
constraints.

3 Logically Constrained Decoding

But what if we wish to enforce richer constraints
than mere syntax? For example, we might wish to
generate a program that obeys specified functional
properties, or a mathematical proof that is logi-
cally sound. For such an application, syntactical
constraints are insufficient, because there is an un-
derlying world model, upon which the correctness
or incorrectness of an output depends. For program
correctness, this world model might include the
values and types of program variables, assumptions
on program paths, and the semantics of various
operators. For mathematical proof, the underly-
ing model might include constraints (assumed or
derived) on the domains and interpretations of all
formal symbols, and the status of assumptions and
proof goals.

In this paper, we propose the concept of logically
constrained decoding. We retain the framework of
constrained decoding, with its desirable attributes,

but we seek to enforce formal, logical constraints
that reflect some world model underlying the rea-
soning.

The basic idea is actually very simple. The key
insight is that the parser P in (normal, syntactic)
constrained decoding is already doing logically
constrained decoding, but just for a very limited,
underlying world model. For regular expressions,
the world model is just a finite automaton; for
CFGs, a pushdown automaton. Why not substi-
tute a richer world model?

So, in logically constrained decoding, we gen-
eralize the parser into a symbolic constraint en-
gine. Just as in normal constrained decoding, it
watches the generated tokens, and updates the state
of its internal world model. And just as in normal
constrained decoding, it reasons about this world
model to mask out illegal next tokens, guaranteeing
that the generated output is correct with respect to
this underlying world model. The difference is that
this world model can be more complex, involving
symbolic reasoning.

The challenge, of course, is the LEGALNEXTTO-
KENS operation. For purely syntactic constraints,
with a finite or pushdown automaton as the under-
lying world model, the legal next tokens can be cal-
culated via standard automata-theoretic techniques.
But for more general constraints, it’s not obvious
that one can compute the set of legal next tokens,
i.e., tokens that are the next token in the prefix
of an overall correct output. Are there any non-
trivial, non-syntactic world models for which we
can implement logically constrained decoding? We
answer this question affirmatively with two simple,
but non-trivial examples: chess and propositional
resolution proofs.

Chess, as a “Drosophila” experiment, turns out
to be easy, but illustrates constraining LLM output
according to formal, logical rules completely un-
like the syntax-focused prior work on constrained
decoding. The underlying world model is simply
the state of the chess board.6 As the LLM gener-
ates chess moves, the symbolic constraint engine
updates the board state. For the LEGALNEXTTO-
KENS operations, the constraint engine solves for
the set of legal next moves in the current game
state, looks at the partially generated move from

6Chess afficianados will note that aside from the obvious
positions of pieces on the board, state includes some additional
information, like en passant pawns, castling options, etc. But
this is all finite-state and well-documented, e.g., in Forsyth-
Edwards notation.

the LLM (if any), and allows any token that can
lead to generating one of the complete legal moves.

Propositional resolution proofs are our second,
more complex example. Propositional proofs are
the essence of mathematical proof, and as men-
tioned earlier, resolution lies at the core of practi-
cal, modern SAT solvers. In this case, the state of
the underlying world model is the set of clauses
that were either given as assumptions, or have been
proven already. A legal “move” is a resolvent of ex-
isting clauses. (We can also enforce that the move
does not generate a duplicate of an existing clause,
or a useless tautology like (x+x).) When the LLM
is trying to generate its next move, the symbolic
constraint engine enforces that each additional to-
ken maintains that the generated output be a prefix
of a legal resolvent. For example, given assump-
tions (1) (−1 + 2) (−2), the legal resolvents are
(2) (generated by resolving (1) and (−1 + 2)),
and (−1) (generated by resolving (−1 + 2) and
(−2)). So, the LLM is constrained7 to generating
a (next, and then either a 2 or a −, and then if it
had generated (2, it must generate a) next, and if
it had generated (−, it must generate a 1 next, etc.

So, it is possible in theory to do logically con-
strained decoding for two small, but non-trivial
problems. But is it efficient enough to improve the
accuracy of real LLMs? That is a question that
must be answered empirically.

4 Empirical Results

We now evaluate how well logically constrained
decoding works on our two example world mod-
els. Specifically, we explore (1) Is it easily imple-
mentable in practice on real LLMs? (2) Does it
improve the quality of LLM outputs on these prob-
lems in practice? and (3) What is the impact on the
LLMs’ token throughput?

To answer the first question, we imple-
mented logically constrained decoding for these
two problems on several different LLM fami-
lies: Qwen2.5 7B / 14B / 32B (Qwen et al.,
2025), Llama 3.1 8B (Grattafiori et al., 2024),
Gemma3 7B / 14B / 27B (Team et al., 2025), Phi4-
mini (Microsoft et al., 2025), and Ministral-8B
(Jiang et al., 2024). We selected these models be-
cause they are open-source, and fit on our comput-
ing infrastructure. (Our experiments were run on a

7As noted earlier, the symbolic constraint engine can be de-
signed to allow the LLM some unconstrained thinking tokens,
and only constrain specific parts of the output.

shared cluster, using Dell EMC C4140 GPU com-
pute nodes, with 8GB RAM per core, and NVIDIA
Tesla V100 GPUs with 16GB or 32GB.) All mod-
els are instruction fine-tuned. To account for nu-
merical instability, Gemma3 models were run with
FP32, while others in FP16. 8-bit quantization
was used for all Gemma3 models and Qwen2.5
32B. Code was in Python, using the HuggingFace
Transformers Library (Wolf et al., 2020). Overall,
we encounted no particular difficulties in imple-
menting logically constrained decoding with these
LLMs. Our code is available on GitHub8.

We evaluate the effect on LLM output quality
in §4.1 for chess, and §4.2 for resolution proofs.
In §4.3, we report on the effect of logically con-
strained decoding on LLM performance (token
throughput).

4.1 Chess Results
We first investigate how much improvement log-
ically constrained decoding provides to LLMs to
avoid illegal moves. Anecdotally, LLMs play open-
ings well, but gradually perform worse as the game
progresses. As we saw in Figure 1, even frontier
models eventually attempt moves that violate the
rules of chess. Thus, as our figure of merit, we look
at the number of legal moves an LLM can make
before it makes an illegal move. At the syntax
level, we ask models to output moves in Standard
Algebraic Notation (SAN). While several other no-
tation systems exist (i.e. Long Algebraic Notation
or Portable Game Notation), we consider a move
valid only if it is written in SAN. More importantly,
though, we check whether each move is a valid
move according to the rules of chess, for the cur-
rent board configuration.

To create a consistent opponent, we play LLMs
against the Stockfish chess engine. We down-
loaded the latest 17.1 version and performed exper-
iments across 5 difficulty settings, with a depth of
15 plies. At lower difficulties, Stockfish chooses
moves more randomly.

Because of the randomness in both Stockfish
and the LLMs, we play 20 games (10 as White, 10
as Black) for each model, with and without logi-
cally constrained decoding. When it is Stockfish’s
turn, it plays (with some randomness, depending
on the difficulty) what it believes to be the best
move. When it is the LLM’s turn, we allow it to
generate a maximum of 10 tokens, which is longer

8https://github.com/terwo/logically-c
onstrained-decoding

https://github.com/terwo/logically-constrained-decoding
https://github.com/terwo/logically-constrained-decoding

Games by Type
Reason Unconstrained Constrained Total

Illegal Move 897 0 897
Checkmated 3 898 901
Draw 0 2 2

Total 900 900 1800

Table 1: Chess Game Outcomes Across All Experi-
ments. For each of the Unconstrained condition (the
original LLM) and the Constrained condition (the LLM
with logically constrained decoding), we played 9 LLMs
against 5 different levels of Stockfish for 20 games each,
for a total of 900 games. Without the benefit of logi-
cally constrained decoding, the LLMs attempted illegal
moves in 897 out of 900 games; in the other 3, the
LLM lost before it could make an illegal move. With
logically constrained decoding, the LLMs never made
illegal moves in any game. Draws were due to the five-
fold repetition rule.

than any possible SAN move in any position. For
the Constrained condition, we allow the start of
a legal move to have leading whitespace, and the
end to have trailing whitespace, but do not allow
whitespace between partial continuations of them.
For example, “ Nf4” is allowed but “N f4” is not.
Each completed set of moves (one from both White
and Black) is then formatted into the prompt for
the LLM’s next move. Full prompts are detailed in
Appendix A.

Detailed experimental results are shown in Fig-
ure 2. On average, the unconstrained models gener-
ated roughly 5 moves before making an illegal one,
whereas the logically constrained models played
legal moves for much longer, until the natural end
of the game. Table 1 summarizes the reasons that
each game ended, over all experiments. Clearly,
logically constrained decoding makes a dramatic
difference in LLM correctness for chess.

4.2 Resolution Proof Results

These experiments are to assess the improvement
that logically constrained decoding provides to
LLMs, to prevent the generation of incorrect proof
steps. Unlike in chess, there is no value in gener-
ating a longer proof — a proof is either correct or
not. Therefore, we count the number of correctly
generated proofs, over repeated trials, as our figure
of merit.

Similar to the variety of chess notations, there
are various syntaxes to represent a clause in propo-
sitional logic. We chose the notation common in
Boolean SAT solving and in electrical engineering,

where the plus sign + symbolizes a logical OR.
As the challenge problem for the proofs, we

chose the well-known Pigeonhole Problem:
proving that it’s impossible to place n + 1
pigeons in n pigeonholes if no two pigeons can
share a pigeonhole. These are hard proofs: the
propositional encoding for this problem has Θ(n2)
variables and Θ(n3) clauses, and the resolution
proof has an exponential lower-bound in size.
We generate problem instances that encode the
pigeonhole problem for 1, 2, and 3 holes. Our
specific SAT encoding is shown in Appendix B.

For 1 and 2 holes, we run each model 50 times
for each constraint condition (with and without
logically constrained decoding). For 3 holes, due to
limited time and computing resources, we could not
complete the full number of trials — more details
below. Similar to our implementation for playing
chess, LLMs were permitted to output tokens that
correspond to brackets, literals, or plus signs with
leading or trailing whitespace. The LLMs are also
allowed to output reasoning steps in separate lines
that start with a double backslash //, and output
the clauses for the proof on new lines. The prompts
used are in Appendix A.

Discussing the results in increasing order of pi-
geonhole size:

1 Pigeonhole, 2 Pigeons: Many unconstrained
models were able to successfully generate resolu-
tion proofs for the pigeonhole problem with only
1 hole and 2 pigeons. With the benefit of logi-
cally constrained decoding, the success rate goes
to 100%. A correct resolution proof for this en-
coding is very short (only 2 resolvents before the
empty clause), so we limited the output generation
to 100 tokens. Figure 3 shows the accuracy for
both constraint conditions across all models for 50
iterations.

2 Pigeonholes, 3 Pigeons: With 2 pigeonholes,
the proof becomes much harder. Across 50 itera-
tions, no Unconstrained models were able to suc-
cessfully complete the resolution proof. In con-
trast, with logically constrained decoding, every
model successfully generated a correct proof 100%
of the time. Figure 4 depicts these results graph-
ically. We limited the output generation to 1000
tokens. We also attempted this proof informally
on some commercial frontier models. (We do not
have the resources to do extensive experiments on
these models.) ChatGPT-5 completed this proof

0

10

20

30

40

50
Av

er
ag

e
N

um
be

r o
f M

ov
es

Qwen2.5-7B-Instruct Qwen2.5-14B-Instruct Qwen2.5-32B-Instruct

0

10

20

30

40

50

Av
er

ag
e

N
um

be
r o

f M
ov

es

gemma-3-4b-it gemma-3-12b-it gemma-3-27b-it

0 5 10 15 20
Difficulty

0

10

20

30

40

50

Av
er

ag
e

N
um

be
r o

f M
ov

es

Phi-4-mini-instruct

0 5 10 15 20
Difficulty

Llama-3.1-8B-Instruct

0 5 10 15 20
Difficulty

Ministral-8B-Instruct-2410

Unconstrained
Constrained

Figure 2: Detailed Experimental Outcomes for Chess Games. There are nine subgraphs here, one for each LLM,
labeled above the subgraph. On each subgraph, the x-axis is the Stockfish difficulty level that was the opponent
of the LLM. The y-axis is the average number of moves played, over 20 games. (The whiskers show 1 standard
deviation.) For each experimental condition, the blue bar on the left is for the original, unconstrained LLM, and
the orange bar on the right is with logically constrained decoding. In the unconstrained condition, the LLMs make
illegal moves very soon after starting to play. With logically constrained decoding, the LLMs never make illegal
moves, so last long enough to eventually lose, losing faster to the stronger Stockfish difficulty settings.

Qwen2.5-7B

Qwen2.5-14B

Qwen2.5-32B

Gemma3-4B

Gemma3-12B

Gemma3-27B

Phi-4-Mini

Llama-3.1-8B

Ministral-8B

Model

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Unconstrained
Constrained

Figure 3: Results for Pigeonhole Proofs of Size 1. The
y-axis is the fraction of proof attempts that were cor-
rect (out of 50 attempts). The x-axis has a pair of bars
for each LLM. In each pair, the blue bar on the left is
the success rate for the original, unconstrained LLM;
the orange bar on the right is the success rate with log-
ically constrained decoding. A missing bar indicates
0% correct proofs. These small LLMs are able to gen-
erate correct resolution proofs in many cases, but this
improves to 100% with logically constrained decoding.

Qwen2.5-7B

Qwen2.5-14B

Qwen2.5-32B

Gemma3-4B

Gemma3-12B

Gemma3-27B

Phi-4-Mini

Llama-3.1-8B

Ministral-8B

Model

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Unconstrained
Constrained

Figure 4: Results for Pigeonhole Proofs of Size 2. This
graph has the same interpretation as Figure 3. However,
all the blue bars are missing, because no unconstrained
LLM was able to complete this proof correctly. The
constrained LLM successfully completes the resolution
proof on all attempts.

1 2 3
Pigeonhole

0

5

10

15

20

25

30
Av

er
ag

e
To

ke
ns

 p
er

 S
ec

on
d

Unconstrained
Constrained

Figure 5: The average tokens per second generated
by Qwen2.5-7B across both Unconstrained and Con-
strained conditions. The logically constrained decoding
for pigeonhole instances of size 3 is optimized by en-
forcing the LLM to only choose possible resolvents of
minimal length.

successfully, but Claude Sonnet 4 did not.

3 Pigeonholes, 4 Pigeons: Due to limited time
and computing resources, we reduced the number
of trials from 50 to 20 per experimental condition.
None of the unconstrained models were able to
successfully complete this resolution proof. We
limited the output generation to 3000 tokens.

For the logically constrained LLMs, we were not
able to complete the experiments. This is a long
and hard proof, and as the number of clauses in
the proof grew, the number of resolvents became
unmanageably large. However, if we relax the goal
of minimal invasiveness, we can exploit the logical
structure of clauses to improve efficiency: specif-
ically, if a partially generated clause is already a
legal resolvent, it is pointless to allow the clause
to grow any longer, as that only makes the clause
weaker. Accordingly, we can modify the constraint
engine to force the LLM not to generate a need-
lessly long resolvent. With this optimization, even
the small Qwen2.5 7B model manages to complete
the proof correctly. In contrast, as described in the
introduction, ChatGPT-5 tries to make an unsound
deduction in its proof attempt.

4.3 Effect on LLM Performance

As a measure of the effect of logically constrained
decoding on LLM throughput, we measured the
average number of tokens per second across all
resolution proofs generated by Qwen2.5-7B in Fig-
ure 5. The optimization mentioned above is applied
to the pigeonhole instances of size 3. The latency
overhead is generally minimal in our experiments.

On the downside, our symbolic constraint en-
gine for the resolution proofs doesn’t scale well
as the proof length grows, because it is trying to
generate all possible resolvents. For example, the
shortest proof generated by Qwen2.5-7B on the
3-pigeonhole proofs was 126 clauses long, and on
this shorter proof, the throughput was 24.7 tokens
per second. In contrast, the longest proof took 627
clauses, which slowed the throughput down to 5.5
tokens per second. This motivates our future work,
to explore more efficient proof systems that avoid
this blow-up in the number of resolvents.

5 Conclusion and Future Work

We have introduced logically constrained decoding,
which lifts the concept of constrained decoding be-
yond syntactic constraints to enforcing logically
correct output with respect to an underlying, for-
mal world model. We have demonstrated proof-of-
concept implementations for chess and for propo-
sitional resolution proofs, on nine different LLMs.
Our technique guarantees that the small LLMs do
not generate illegal outputs for the problems be-
ing solved, and enables them to generate correct
outputs on problems that even state-of-the-art, pro-
prietary frontier models solve incorrectly.

The main line for future work is to expand the ap-
plicability of our technique to additional domains,
such as code generation or richer proof systems
(e.g., Lean). The principle challenge is how to turn
the logical constraints into something that can be
enforced efficiently at the token level. For code
generation, we are excited by the work of Mündler
et al. (Mündler et al., 2025) on constrained gen-
eration of type-safe programs. For mathematical
proof, we are currently developing a more efficient
technique for a more powerful proof system than
resolution.

Limitations

In empirical research on LLMs, there is always the
risk of unexpected behavior due to minor variations
in prompts. For example, there are many notations
for Boolean OR in common use that might have
appeared in training data, so an LLM might be-
have differently if we had prompted it to use ∨ or
even \lor, instead of +. We have not explored
varying the prompts, but we do not expect that our
results would change materially. Our prompts are
disclosed in Appendix A.

We can modify and perform experiments only

on open-source language models, so it is unclear
to what degree our results can be applied to pro-
prietary, frontier models. Similarly, even with
open-source models, we were limited by our avail-
able computing resources to using smaller models.
We believe these are sufficient to demonstrate the
promise of our approach, but more extensive exper-
iments would be valuable.

In our prompts, we suggest limits to how the
LLM can “think aloud” in its answers. This is
purely to simplify our implementation, so that our
symbolic reasoning engine can easily ignore the
unstructured portions of the LLM output. Baner-
jee et al. 2025 show that strictly constraining LLM
outputs can reduce the LLM’s reasoning ability,
but this can be restored by allowing the LLM to
generate unconstrained output with only clearly de-
limited parts subject to the constraints. Our chess
experiments did not allow arbitrary unconstrained
“thinking” outputs, so the LLMs likely did not play
as well as they might have. Nevertheless, we were
evaluating LLMs only on whether moves were le-
gal or not. Our resolution proof experiments did
allow the LLMs to generate unconstrained outputs
within comments, along the lines suggested by
Banerjee et al.

Our current implementation for resolution does
not scale to larger proofs. Even so, we are able
to generate correct proofs with smaller LLMs for
problems that befuddle large, frontier LLMs. As
noted above, we are working on a much more effi-
cient proof system, which should scale better.

Acknowledgements

This research was funded through an Undergrad-
uate Summer Research Award and a Discovery
Grant, both from the Natural Sciences and En-
gineering Research Council of Canada (NSERC).
This research was also supported through the com-
putational resources and services provided by Ad-
vanced Research Computing at the University of
British Columbia.

References
Marie Amalric and Stanislas Dehaene. 2016. Origins

of the brain networks for advanced mathematics in
expert mathematicians. Proceedings of the National
Academy of Sciences, 113(18):4909–4917.

Debangshu Banerjee, Tarun Suresh, Shubham Ugare,
Sasa Misailovic, and Gagandeep Singh. 2025.

CRANE: Reasoning with constrained LLM gener-
ation. In 42nd International Conference on Machine
Learning.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev.
2023. Prompting is programming: A query language
for large language models. Proc. ACM Program.
Lang., 7(PLDI).

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev.
2024. Guiding LLMs the right way: Fast, non-
invasive constrained generation. In Proceedings of
the 41st International Conference on Machine Learn-
ing, ICML’24. JMLR.org.

Nathan Ensmenger. 2012. Is chess the drosophila of
artificial intelligence? a social history of an algorithm.
Social Studies of Science, 42(1):5–30.

Siavash Golkar, Mariel Pettee, Michael Eickenberg,
Alberto Bietti, Miles Cranmer, Geraud Krawezik,
Francois Lanusse, Michael McCabe, Ruben Ohana,
Liam Parker, Bruno Régaldo-Saint Blancard, Tiberiu
Tesileanu, Kyunghyun Cho, and Shirley Ho. 2024.
xval: A continuous numerical tokenization for scien-
tific language models. Preprint, arXiv:2310.02989.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Francisco Guzmán, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Govind Thattai, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,
Louis Martin, Lovish Madaan, Lubo Malo, Lukas

https://doi.org/10.1073/pnas.1603205113
https://doi.org/10.1073/pnas.1603205113
https://doi.org/10.1073/pnas.1603205113
https://openreview.net/forum?id=wKs9fHYxCV
https://openreview.net/forum?id=wKs9fHYxCV
https://doi.org/10.1145/3591300
https://doi.org/10.1145/3591300
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1177/0306312711424596
https://arxiv.org/abs/2310.02989
https://arxiv.org/abs/2310.02989

Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,
Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-
ran Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit San-
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-
dres Alvarado, Andrew Caples, Andrew Gu, Andrew
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Ce Liu, Changhan Wang,
Changkyu Kim, Chao Zhou, Chester Hu, Ching-
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,
Daniel Kreymer, Daniel Li, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn,
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat

Ozgenel, Francesco Caggioni, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant
Herman, Grigory Sizov, Guangyi, Zhang, Guna
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry As-
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov,
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha
White, Navyata Bawa, Nayan Singhal, Nick Egebo,
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-
dro Rittner, Philip Bontrager, Pierre Roux, Piotr
Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,
Satadru Pan, Saurabh Mahajan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng

Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd
of models. Preprint, arXiv:2407.21783.

Sil Hamilton and David Mimno. 2025. Lost in
space: Finding the right tokens for structured out-
put. Preprint, arXiv:2502.14969.

Alexey Ignatiev, Antonio Morgado, and Joao Marques-
Silva. 2018. PySAT: A Python toolkit for prototyping
with SAT oracles. In SAT, pages 428–437.

Alexey Ignatiev, Zi Li Tan, and Christos Karamanos.
2024. Towards universally accessible SAT technol-
ogy. In SAT, pages 4:1–4:11.

Albert Jiang, Alexandre Abou Chahine, Alexandre
Sablayrolles, Alexis Tacnet, Alodie Boissonnet,
Alok Kothari, Amélie Héliou, Andy Lo, Anna Per-
onnin, Antoine Meunier, Antoine Roux, Antonin
Faure, Aritra Paul, Arthur Darcet, Arthur Mensch,
Audrey Herblin-Stoop, Augustin Garreau, Austin
Birky, Avinash Sooriyarachchi, Baptiste Rozière,
Barry Conklin, Bastien Bouillon, Blanche Savary
de Beauregard, Carole Rambaud, Caroline Feld-
man, Charles de Freminville, Charline Mauro, Chih-
Kuan Yeh, Chris Bamford, Clement Auguy, Corentin
Heintz, Cyriaque Dubois, Devendra Singh Chaplot,
Diego Las Casas, Diogo Costa, Eléonore Arcelin,
Emma Bou Hanna, Etienne Metzger, Fanny Olivier
Autran, Francois Lesage, Garance Gourdel, Gas-
pard Blanchet, Gaspard Donada Vidal, Gianna Maria
Lengyel, Guillaume Bour, Guillaume Lample, Gus-
tave Denis, Harizo Rajaona, Himanshu Jaju, Ian
Mack, Ian Mathew, Jean-Malo Delignon, Jeremy Fac-
chetti, Jessica Chudnovsky, Joachim Studnia, Justus
Murke, Kartik Khandelwal, Kenneth Chiu, Kevin
Riera, Leonard Blier, Leonard Suslian, Leonardo
Deschaseaux, Louis Martin, Louis Ternon, Lucile
Saulnier, Lélio Renard Lavaud, Sophia Yang, Mar-
garet Jennings, Marie Pellat, Marie Torelli, Marjorie
Janiewicz, Mathis Felardos, Maxime Darrin, Michael
Hoff, Mickaël Seznec, Misha Jessel Kenyon, Nayef
Derwiche, Nicolas Carmont Zaragoza, Nicolas Fau-
rie, Nicolas Moreau, Nicolas Schuhl, Nikhil Raghu-
raman, Niklas Muhs, Olivier de Garrigues, Patricia
Rozé, Patricia Wang, Patrick von Platen, Paul Ja-
cob, Pauline Buche, Pavankumar Reddy Muddireddy,
Perry Savas, Pierre Stock, Pravesh Agrawal, Renaud
de Peretti, Romain Sauvestre, Romain Sinthe, Ro-
man Soletskyi, Sagar Vaze, Sandeep Subramanian,
Saurabh Garg, Soham Ghosh, Sylvain Regnier, Szy-
mon Antoniak, Teven Le Scao, Theophile Gervet,
Thibault Schueller, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, Valeriia Nemychnikova, Wendy
Shang, William El Sayed, and William Marshall.
2024. Ministral 8b.

Thang Luong and Edward Lockhart. 2025. Ad-
vanced version of Gemini with Deep Think officially

achieves gold-medal standard at the International
Mathematical Olympiad. https://deepmind
.google/discover/blog/advanced-ver
sion-of-gemini-with-deep-think-off
icially-achieves-gold-medal-stand
ard-at-the-international-mathemati
cal-olympiad/. [Online; accessed 2025-Aug-
25].

Microsoft, :, Abdelrahman Abouelenin, Atabak Ash-
faq, Adam Atkinson, Hany Awadalla, Nguyen Bach,
Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav
Chaudhary, Congcong Chen, Dong Chen, Dongdong
Chen, Junkun Chen, Weizhu Chen, Yen-Chun Chen,
Yi ling Chen, Qi Dai, Xiyang Dai, Ruchao Fan, Mei
Gao, Min Gao, Amit Garg, Abhishek Goswami, Jun-
heng Hao, Amr Hendy, Yuxuan Hu, Xin Jin, Mah-
moud Khademi, Dongwoo Kim, Young Jin Kim,
Gina Lee, Jinyu Li, Yunsheng Li, Chen Liang, Xihui
Lin, Zeqi Lin, Mengchen Liu, Yang Liu, Gilsinia
Lopez, Chong Luo, Piyush Madan, Vadim Mazalov,
Arindam Mitra, Ali Mousavi, Anh Nguyen, Jing Pan,
Daniel Perez-Becker, Jacob Platin, Thomas Portet,
Kai Qiu, Bo Ren, Liliang Ren, Sambuddha Roy, Ning
Shang, Yelong Shen, Saksham Singhal, Subhojit
Som, Xia Song, Tetyana Sych, Praneetha Vaddamanu,
Shuohang Wang, Yiming Wang, Zhenghao Wang,
Haibin Wu, Haoran Xu, Weijian Xu, Yifan Yang, Ziyi
Yang, Donghan Yu, Ishmam Zabir, Jianwen Zhang,
Li Lyna Zhang, Yunan Zhang, and Xiren Zhou. 2025.
Phi-4-mini technical report: Compact yet powerful
multimodal language models via mixture-of-loras.
Preprint, arXiv:2503.01743.

Niels Mündler, Jingxuan He, Hao Wang, Koushik
Sen, Dawn Song, and Martin Vechev. 2025. Type-
constrained code generation with language models.
Proceedings of the ACM on Programming Languages,
9(PLDI):601–626.

Leyan Pan, Vijay Ganesh, Jacob Abernethy, Chris Es-
poso, and Wenke Lee. 2025. Can transformers reason
logically? a study in SAT solving. In 42nd Interna-
tional Conference on Machine Learning (ICML).

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. Preprint, arXiv:2412.15115.

Tord Romstad, Marco Costalba, Joona Kiiski, and Stock-
fish Community. 2008–present. Stockfish: Strong
open-source chess engine. https://stockfis
hchess.org/. [Online; accessed 2025-Aug-25].

Herbert A. Simon and William G. Chase. 1973. Skill in
chess. American Scientist, 61:394–403.

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2502.14969
https://arxiv.org/abs/2502.14969
https://arxiv.org/abs/2502.14969
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.4230/LIPICS.SAT.2024.16
https://doi.org/10.4230/LIPICS.SAT.2024.16
https://mistral.ai/news/ministraux
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://arxiv.org/abs/2503.01743
https://arxiv.org/abs/2503.01743
https://doi.org/10.1145/3729274
https://doi.org/10.1145/3729274
https://openreview.net/forum?id=5BGC2I2fxx
https://openreview.net/forum?id=5BGC2I2fxx
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://stockfishchess.org/
https://stockfishchess.org/

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya
Pathak, Nino Vieillard, Ramona Merhej, Sarah Per-
rin, Tatiana Matejovicova, Alexandre Ramé, Mor-
gane Rivière, Louis Rouillard, Thomas Mesnard, Ge-
offrey Cideron, Jean bastien Grill, Sabela Ramos,
Edouard Yvinec, Michelle Casbon, Etienne Pot, Ivo
Penchev, Gaël Liu, Francesco Visin, Kathleen Ke-
nealy, Lucas Beyer, Xiaohai Zhai, Anton Tsitsulin,
Robert Busa-Fekete, Alex Feng, Noveen Sachdeva,
Benjamin Coleman, Yi Gao, Basil Mustafa, Iain
Barr, Emilio Parisotto, David Tian, Matan Eyal,
Colin Cherry, Jan-Thorsten Peter, Danila Sinopal-
nikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran
Kazemi, Dan Malkin, Ravin Kumar, David Vilar,
Idan Brusilovsky, Jiaming Luo, Andreas Steiner,
Abe Friesen, Abhanshu Sharma, Abheesht Sharma,
Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
Saade, Alex Feng, Alexander Kolesnikov, Alexei
Bendebury, Alvin Abdagic, Amit Vadi, András
György, André Susano Pinto, Anil Das, Ankur
Bapna, Antoine Miech, Antoine Yang, Antonia Pater-
son, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot,
Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie
Chen, Charline Le Lan, Christopher A. Choquette-
Choo, CJ Carey, Cormac Brick, Daniel Deutsch,
Danielle Eisenbud, Dee Cattle, Derek Cheng, Dim-
itris Paparas, Divyashree Shivakumar Sreepathi-
halli, Doug Reid, Dustin Tran, Dustin Zelle, Eric
Noland, Erwin Huizenga, Eugene Kharitonov, Fred-
erick Liu, Gagik Amirkhanyan, Glenn Cameron,
Hadi Hashemi, Hanna Klimczak-Plucińska, Har-
man Singh, Harsh Mehta, Harshal Tushar Lehri,
Hussein Hazimeh, Ian Ballantyne, Idan Szpektor,
Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe
Stanton, John Wieting, Jonathan Lai, Jordi Orbay,
Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jy-
otinder Singh, Kat Black, Kathy Yu, Kevin Hui, Ki-
ran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella
Valentine, Marina Coelho, Marvin Ritter, Matt Hoff-
man, Matthew Watson, Mayank Chaturvedi, Michael
Moynihan, Min Ma, Nabila Babar, Natasha Noy,
Nathan Byrd, Nick Roy, Nikola Momchev, Nilay
Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil
Botarda, Paul Caron, Paul Kishan Rubenstein, Phil
Culliton, Philipp Schmid, Pier Giuseppe Sessa, Ping-
mei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shiv-
anna, Renjie Wu, Renke Pan, Reza Rokni, Rob
Willoughby, Rohith Vallu, Ryan Mullins, Sammy
Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal,
Shashir Reddy, Shruti Sheth, Siim Põder, Sijal Bhat-
nagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan
Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty,
Uday Kalra, Utku Evci, Vedant Misra, Vincent Rose-
berry, Vlad Feinberg, Vlad Kolesnikov, Woohyun
Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta,
Minh Giang, Phoebe Kirk, Anand Rao, Kat Black,
Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gus-
tavo Martins, Omar Sanseviero, Lucas Gonzalez,
Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan
Senter, Eli Collins, Joelle Barral, Zoubin Ghahra-
mani, Raia Hadsell, Yossi Matias, D. Sculley, Slav
Petrov, Noah Fiedel, Noam Shazeer, Oriol Vinyals,
Jeff Dean, Demis Hassabis, Koray Kavukcuoglu,

Clement Farabet, Elena Buchatskaya, Jean-Baptiste
Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian
Borgeaud, Olivier Bachem, Armand Joulin, Alek An-
dreev, Cassidy Hardin, Robert Dadashi, and Léonard
Hussenot. 2025. Gemma 3 technical report. Preprint,
arXiv:2503.19786.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Mi-
sailovic, and Gagandeep Singh. 2024. Syncode: Llm
generation with grammar augmentation. Preprint,
arXiv:2403.01632.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren,
Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai He,
Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang
Wang, Simon Shaolei Du, and Yelong Shen. 2025.
Reinforcement learning for reasoning in large lan-
guage models with one training example. Preprint,
arXiv:2504.20571.

Alexander Wei. 2025. I’m excited to share that our latest
@OpenAI experimental reasoning LLM has achieved
a longstanding grand challenge in AI: gold medal-
level performance on the world’s most prestigious
math competition—the International Math Olympiad
(IMO). https://x.com/alexwei_/statu
s/1946477742855532918. [Online; accessed
2025-Aug-25].

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Brandon T. Willard and Rémi Louf. 2023. Effi-
cient guided generation for large language models.
Preprint, arXiv:2307.09702.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. Preprint, arXiv:1910.03771.

https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2504.20571
https://x.com/alexwei_/status/1946477742855532918
https://x.com/alexwei_/status/1946477742855532918
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771

A Full Prompts

The prompts used for experiments are listed below. There is no whitespace after the colon in all prompts.

Chess Prompts

White’s Perspective

You are a chess grandmaster.
You are playing chess as White in the
starting position. You are playing
against a strong opponent.
Output your next, competitive move
in Standard Algebraic Notation
(SAN). Do not include move num-
bers.

White:

Black’s Perspective

You are a chess grandmaster.
You are playing chess as Black after
White has made their first move.
You are playing against a strong
opponent.
Output your next, competitive move
in Standard Algebraic Notation
(SAN). Do not include move num-
bers.

White:
{stockfish_chosen_move}
Black:

Figure 6: Prompts for Playing Chess Against Stockfish. If playing as Black, the first prompt will include the first
move chosen by Stockfish.

Unconstrained Resolution Prompt

Generate an unsatisfiability proof for the given clause database using only resolution steps.
Rules for Clauses:
1. Each clause must start with ’(’ and end with ’)’.
- Integers must be separated by ’+’ with optional spaces around it.
- Negated literals have a leading ’-’
- Example: (1 + -3 + 4) 2.
Each derived clause must be valid with respect to the original database and all previously generated
clauses.
- A clause C is valid if it is the resolvent of two existing clauses in the current set.
- The two parent clauses must share exactly one pair of complementary literals.
- The resolvent is formed by taking all literals from both parents except the complementary pair,
with duplicate literals removed.
3. Do not repeat any clauses already in the database or previously generated.

Output Format:
- Each line is either:
a) A comment line starting with ’//’ followed by reasoning, OR
b) A clause line in parentheses only, with no extra text.
- No introductions, no summaries, no prose outside of comment lines.
- First non-comment line must be a clause.
- The proof must end exactly with the empty clause ().
Example:
Clause database: (1 + 2) (1 + -2) (-1 + 2) (-1 + -2) (1 + 2 + 3)
Proof:
// Resolving (1 + 2) and (-1 + 2) on literals 1 and -1 gives (2)
(2)
// Resolving (1 + -2) and (-1 + -2) on literals 1 and -1 gives (-2)
(-2)
// Resolving (2) and (-2) gives the empty clause ()
()

Now, generate an unsatisfiability proof for the following:
Clause database: {clause_database}
Proof:

Figure 7: The Prompt to Generate Resolution Proofs with Unconstrained Decoding

Constrained Resolution Prompt

Generate an unsatisfiability proof for the given clause database using only resolution steps.
Rules for Clauses:
1. Each clause must start with ’(’ and end with ’)’.
- Integers must be separated by ’+’ with optional spaces around it.
- Negated literals have a leading ’-’
- Example: (1 + -3 + 4) 2.
Each derived clause must be valid with respect to the original database and all previously generated
clauses.
- A clause C is valid if it is the resolvent of two existing clauses in the current set.
- The two parent clauses must share exactly one pair of complementary literals.
- The resolvent is formed by taking all literals from both parents except the complementary pair,
with duplicate literals removed.
3. Do not repeat any clauses already in the database or previously generated.

Output Format:
- Each line is either:
a) A comment line starting with ’//’ followed by reasoning, OR
b) A clause line in parentheses only, with no extra text.
- No introductions, no summaries, no prose outside of comment lines.
- First non-comment line must be a clause.
- The proof must end exactly with the empty clause ().
Example:
Clause database: (1 + 2) (1 + -2) (-1 + 2) (-1 + -2) (1 + 2 + 3)
Proof: (2) (-2) ()

Now, generate an unsatisfiability proof for the following:
Clause database: {clause_database}
Proof:

Figure 8: The Prompt to Generate Resolution Proofs with Logically Constrained Decoding

B Pigeonhole Encoding

We encode our pigeonhole principle instances with n holes and k = n + 1 pigeons: for each pigeon
i ∈ {1, ..., k} and hole j ∈ {1, ..., n}, we introduce a new variable variable xij , which is True if pigeon i
is in hole j.

The CNF formula has two types of clauses:

1. Pigeon clauses
For each pigeon i, it must be in some hole

(xi1 + xi2 + ...+ xin) for each i ∈ {1, ..., k}

2. Hole clauses
For each hole j, for every pair of distinct pigeons i ̸= i′, both must not be in the same hole

(−xij +−xi′j) for each j ∈ {1, ..., n}, 1 ≤ i < i′ ≤ k

Since there are n+ 1 pigeons yet only n holes, the formula is unsatisfiable, which can be proven with
resolution.

We store these formulas in the DIMACS format. We load these formulas with the PySAT package
(Ignatiev et al., 2018, 2024). An example of our encoding for a pigeonhole instance of size 2 is as follows:

p cnf 6 9
1 2 0
3 4 0
5 6 0
-1 -3 0
-1 -5 0
-3 -5 0
-2 -4 0
-2 -6 0
-4 -6 0

C Tokenization

We only allow one consistent method of representing answers to each given problem (e.g., SAN for chess,
using plus signs OR in resolution proofs). In our implementation, we track the generation state, and
condition the valid next tokens on the current state. For example, in the resolution proof example, the
logically constrained model can only generate literals after outputting a left paranthesis or plus sign.

Therefore, we ensure that no tokenizer would split legal strings across states. After investigating how
each model family would tokenize text that represent legal moves / valid clauses under our specified
syntax, we did not find cases where strings that are composed of multiple states would be represented as
one token (e.g., "+ 3" could be tokenized separately as "+" and " 3" but not fully as one token). Many
tokenizers also represent larger numbers by splitting them up digit-by-digit (Golkar et al., 2024), and we
account for this in the state transitions for SAT solving by allowing the generation state to enter a "partial
literal" state.

D Sampling Parameters

We use all defaults provided by the HuggingFace Transformers library. We explicitly set temperature =
1.0, but otherwise defer to the model’s default configuration (e.g., top-k, top-k, etc.).

Pigeonhole Size (n) Max Token Limit

1 100
2 1000
3 3000

Table 2: Maximum Token Limits Allocated Depending on the Pigeonhole Size

	Introduction
	Background
	Chess
	Propositional Resolution Proofs
	Constrained Decoding

	Logically Constrained Decoding
	Empirical Results
	Chess Results
	Resolution Proof Results
	Effect on LLM Performance

	Conclusion and Future Work
	Full Prompts
	Pigeonhole Encoding
	Tokenization
	Sampling Parameters

